Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing.

Identifieur interne : 000203 ( Main/Exploration ); précédent : 000202; suivant : 000204

Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing.

Auteurs : Felix Adusei-Danso [États-Unis] ; Faisal Tarique Khaja [États-Unis] ; Micaela Desantis [États-Unis] ; Philip D. Jeffrey [États-Unis] ; Eugenie Dubnau [États-Unis] ; Borries Demeler [Canada] ; Matthew B. Neiditch [États-Unis] ; David Dubnau [États-Unis]

Source :

RBID : pubmed:31530674

Descripteurs français

English descriptors

Abstract

In Bacillus subtilis, the RicA (YmcA), RicF (YlbF), and RicT (YaaT) proteins accelerate the phosphorylation of the transcription factor Spo0A, contributing to genetic competence, sporulation, and biofilm formation, and are also essential for the correct maturation of several protein-encoding and riboswitch RNAs. These proteins form a stable complex (RicAFT) that carries two [4Fe-4S]+2 clusters. We show here that the complex is a 1:1:1 heterotrimer, and we present the X-ray crystal structures of a RicAF heterotetramer and of a RicA dimer. We also demonstrate that one of the Fe-S clusters (cluster 1) is ligated by cysteine residues donated exclusively by RicT and can be retained when the RicT monomer is purified by itself. Cluster 2 is ligated by C167 from RicT, by C134 and C146 located near the C terminus of RicF, and by C141 at the C terminus of RicA. These findings imply the following novel arrangement: adjacent RicT residues C166 and 167 ligate clusters 1 and 2, respectively, while cluster 2 is ligated by cysteine residues from RicT, RicA, and RicF. Thus, the two clusters must lie close to one another and at the interface of the RicAFT protomers. We also show that the cluster-ligating cysteine residues, and therefore most likely both Fe-S clusters, are essential for cggR-gapA mRNA maturation, for the regulation of ricF transcript stability, and for several Ric-associated developmental phenotypes, including competence for transformation, biofilm formation, and sporulation. Finally, we present evidence that RicAFT, RicAF, and RicA and the RicT monomer may play distinct regulatory roles in vivoIMPORTANCE The RicA, RicF, and RicT proteins are widely conserved among the firmicute bacteria and play multiple roles in Bacillus subtilis Among the phenotypes associated with the inactivation of these proteins are the inability to be genetically transformed or to form biofilms, a decrease in sporulation frequency, and changes in the stability and maturation of multiple RNA species. Despite their importance, the molecular mechanisms of Ric protein activities have not been elucidated and the roles of the two iron-sulfur clusters on the complex of the three proteins are not understood. To unravel the mechanisms of Ric action, molecular characterization of the complex and of its constituent proteins is essential. This report represents a major step toward understanding the structures of the Ric proteins, the arrangement and roles of the Fe-S clusters, and the phenotypes associated with Ric mutations.

DOI: 10.1128/mBio.01841-19
PubMed: 31530674
PubMed Central: PMC6751060


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing.</title>
<author>
<name sortKey="Adusei Danso, Felix" sort="Adusei Danso, Felix" uniqKey="Adusei Danso F" first="Felix" last="Adusei-Danso">Felix Adusei-Danso</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Khaja, Faisal Tarique" sort="Khaja, Faisal Tarique" uniqKey="Khaja F" first="Faisal Tarique" last="Khaja">Faisal Tarique Khaja</name>
<affiliation wicri:level="2">
<nlm:affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Public Health Research Center of New Jersey Medical School, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Desantis, Micaela" sort="Desantis, Micaela" uniqKey="Desantis M" first="Micaela" last="Desantis">Micaela Desantis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Public Health Research Center of New Jersey Medical School, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeffrey, Philip D" sort="Jeffrey, Philip D" uniqKey="Jeffrey P" first="Philip D" last="Jeffrey">Philip D. Jeffrey</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dubnau, Eugenie" sort="Dubnau, Eugenie" uniqKey="Dubnau E" first="Eugenie" last="Dubnau">Eugenie Dubnau</name>
<affiliation wicri:level="2">
<nlm:affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Public Health Research Center of New Jersey Medical School, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Demeler, Borries" sort="Demeler, Borries" uniqKey="Demeler B" first="Borries" last="Demeler">Borries Demeler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry & Biochemistry, The University of Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry & Biochemistry, The University of Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Neiditch, Matthew B" sort="Neiditch, Matthew B" uniqKey="Neiditch M" first="Matthew B" last="Neiditch">Matthew B. Neiditch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dubnau, David" sort="Dubnau, David" uniqKey="Dubnau D" first="David" last="Dubnau">David Dubnau</name>
<affiliation wicri:level="2">
<nlm:affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA dubnauda@njms.rutgers.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Public Health Research Center of New Jersey Medical School, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31530674</idno>
<idno type="pmid">31530674</idno>
<idno type="doi">10.1128/mBio.01841-19</idno>
<idno type="pmc">PMC6751060</idno>
<idno type="wicri:Area/Main/Corpus">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000225</idno>
<idno type="wicri:Area/Main/Curation">000225</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000225</idno>
<idno type="wicri:Area/Main/Exploration">000225</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing.</title>
<author>
<name sortKey="Adusei Danso, Felix" sort="Adusei Danso, Felix" uniqKey="Adusei Danso F" first="Felix" last="Adusei-Danso">Felix Adusei-Danso</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Khaja, Faisal Tarique" sort="Khaja, Faisal Tarique" uniqKey="Khaja F" first="Faisal Tarique" last="Khaja">Faisal Tarique Khaja</name>
<affiliation wicri:level="2">
<nlm:affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Public Health Research Center of New Jersey Medical School, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Desantis, Micaela" sort="Desantis, Micaela" uniqKey="Desantis M" first="Micaela" last="Desantis">Micaela Desantis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Public Health Research Center of New Jersey Medical School, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeffrey, Philip D" sort="Jeffrey, Philip D" uniqKey="Jeffrey P" first="Philip D" last="Jeffrey">Philip D. Jeffrey</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biology, Princeton University, Princeton, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">Princeton (New Jersey)</settlement>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dubnau, Eugenie" sort="Dubnau, Eugenie" uniqKey="Dubnau E" first="Eugenie" last="Dubnau">Eugenie Dubnau</name>
<affiliation wicri:level="2">
<nlm:affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Public Health Research Center of New Jersey Medical School, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Demeler, Borries" sort="Demeler, Borries" uniqKey="Demeler B" first="Borries" last="Demeler">Borries Demeler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry & Biochemistry, The University of Lethbridge, Alberta, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemistry & Biochemistry, The University of Lethbridge, Alberta</wicri:regionArea>
<wicri:noRegion>Alberta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Neiditch, Matthew B" sort="Neiditch, Matthew B" uniqKey="Neiditch M" first="Matthew B" last="Neiditch">Matthew B. Neiditch</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Dubnau, David" sort="Dubnau, David" uniqKey="Dubnau D" first="David" last="Dubnau">David Dubnau</name>
<affiliation wicri:level="2">
<nlm:affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA dubnauda@njms.rutgers.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Public Health Research Center of New Jersey Medical School, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacillus subtilis (chemistry)</term>
<term>Bacillus subtilis (genetics)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>RNA (genetics)</term>
<term>Structure-Activity Relationship (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN (génétique)</term>
<term>Bacillus subtilis (composition chimique)</term>
<term>Bacillus subtilis (génétique)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Ferrosulfoprotéines</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Bacterial Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>RNA</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN</term>
<term>Bacillus subtilis</term>
<term>Ferrosulfoprotéines</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallography, X-Ray</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Relation structure-activité</term>
<term>Régulation de l'expression des gènes bactériens</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In
<i>Bacillus subtilis</i>
, the RicA (YmcA), RicF (YlbF), and RicT (YaaT) proteins accelerate the phosphorylation of the transcription factor Spo0A, contributing to genetic competence, sporulation, and biofilm formation, and are also essential for the correct maturation of several protein-encoding and riboswitch RNAs. These proteins form a stable complex (RicAFT) that carries two [4Fe-4S]
<sup>+2</sup>
clusters. We show here that the complex is a 1:1:1 heterotrimer, and we present the X-ray crystal structures of a RicAF heterotetramer and of a RicA dimer. We also demonstrate that one of the Fe-S clusters (cluster 1) is ligated by cysteine residues donated exclusively by RicT and can be retained when the RicT monomer is purified by itself. Cluster 2 is ligated by C167 from RicT, by C134 and C146 located near the C terminus of RicF, and by C141 at the C terminus of RicA. These findings imply the following novel arrangement: adjacent RicT residues C166 and 167 ligate clusters 1 and 2, respectively, while cluster 2 is ligated by cysteine residues from RicT, RicA, and RicF. Thus, the two clusters must lie close to one another and at the interface of the RicAFT protomers. We also show that the cluster-ligating cysteine residues, and therefore most likely both Fe-S clusters, are essential for
<i>cggR-gapA</i>
mRNA maturation, for the regulation of
<i>ricF</i>
transcript stability, and for several Ric-associated developmental phenotypes, including competence for transformation, biofilm formation, and sporulation. Finally, we present evidence that RicAFT, RicAF, and RicA and the RicT monomer may play distinct regulatory roles
<i>in vivo</i>
<b>IMPORTANCE</b>
The RicA, RicF, and RicT proteins are widely conserved among the firmicute bacteria and play multiple roles in
<i>Bacillus subtilis</i>
Among the phenotypes associated with the inactivation of these proteins are the inability to be genetically transformed or to form biofilms, a decrease in sporulation frequency, and changes in the stability and maturation of multiple RNA species. Despite their importance, the molecular mechanisms of Ric protein activities have not been elucidated and the roles of the two iron-sulfur clusters on the complex of the three proteins are not understood. To unravel the mechanisms of Ric action, molecular characterization of the complex and of its constituent proteins is essential. This report represents a major step toward understanding the structures of the Ric proteins, the arrangement and roles of the Fe-S clusters, and the phenotypes associated with Ric mutations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31530674</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01841-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.01841-19</ELocationID>
<Abstract>
<AbstractText>In
<i>Bacillus subtilis</i>
, the RicA (YmcA), RicF (YlbF), and RicT (YaaT) proteins accelerate the phosphorylation of the transcription factor Spo0A, contributing to genetic competence, sporulation, and biofilm formation, and are also essential for the correct maturation of several protein-encoding and riboswitch RNAs. These proteins form a stable complex (RicAFT) that carries two [4Fe-4S]
<sup>+2</sup>
clusters. We show here that the complex is a 1:1:1 heterotrimer, and we present the X-ray crystal structures of a RicAF heterotetramer and of a RicA dimer. We also demonstrate that one of the Fe-S clusters (cluster 1) is ligated by cysteine residues donated exclusively by RicT and can be retained when the RicT monomer is purified by itself. Cluster 2 is ligated by C167 from RicT, by C134 and C146 located near the C terminus of RicF, and by C141 at the C terminus of RicA. These findings imply the following novel arrangement: adjacent RicT residues C166 and 167 ligate clusters 1 and 2, respectively, while cluster 2 is ligated by cysteine residues from RicT, RicA, and RicF. Thus, the two clusters must lie close to one another and at the interface of the RicAFT protomers. We also show that the cluster-ligating cysteine residues, and therefore most likely both Fe-S clusters, are essential for
<i>cggR-gapA</i>
mRNA maturation, for the regulation of
<i>ricF</i>
transcript stability, and for several Ric-associated developmental phenotypes, including competence for transformation, biofilm formation, and sporulation. Finally, we present evidence that RicAFT, RicAF, and RicA and the RicT monomer may play distinct regulatory roles
<i>in vivo</i>
<b>IMPORTANCE</b>
The RicA, RicF, and RicT proteins are widely conserved among the firmicute bacteria and play multiple roles in
<i>Bacillus subtilis</i>
Among the phenotypes associated with the inactivation of these proteins are the inability to be genetically transformed or to form biofilms, a decrease in sporulation frequency, and changes in the stability and maturation of multiple RNA species. Despite their importance, the molecular mechanisms of Ric protein activities have not been elucidated and the roles of the two iron-sulfur clusters on the complex of the three proteins are not understood. To unravel the mechanisms of Ric action, molecular characterization of the complex and of its constituent proteins is essential. This report represents a major step toward understanding the structures of the Ric proteins, the arrangement and roles of the Fe-S clusters, and the phenotypes associated with Ric mutations.</AbstractText>
<CopyrightInformation>Copyright © 2019 Adusei-Danso et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Adusei-Danso</LastName>
<ForeName>Felix</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Khaja</LastName>
<ForeName>Faisal Tarique</ForeName>
<Initials>FT</Initials>
<AffiliationInfo>
<Affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DeSantis</LastName>
<ForeName>Micaela</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jeffrey</LastName>
<ForeName>Philip D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dubnau</LastName>
<ForeName>Eugenie</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Demeler</LastName>
<ForeName>Borries</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry & Biochemistry, The University of Lethbridge, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Neiditch</LastName>
<ForeName>Matthew B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dubnau</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Public Health Research Center of New Jersey Medical School, Newark, New Jersey, USA dubnauda@njms.rutgers.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>mBio. 2020 Mar 10;11(2):</RefSource>
<PMID Version="1">32156813</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>mBio. 2020 Mar 10;11(2):</RefSource>
<PMID Version="1">32156829</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Bacillus subtilis</Keyword>
<Keyword MajorTopicYN="Y">RNA processing</Keyword>
<Keyword MajorTopicYN="Y">Ric proteins</Keyword>
<Keyword MajorTopicYN="Y">bacterial development</Keyword>
<Keyword MajorTopicYN="Y">iron sulfur cluster</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31530674</ArticleId>
<ArticleId IdType="pii">mBio.01841-19</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.01841-19</ArticleId>
<ArticleId IdType="pmc">PMC6751060</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Anal Biochem. 2004 Dec 15;335(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jun 12;46(23):6804-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17506525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 20;40(46):14069-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 6;287(15):12365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22362766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Apr;88(2):283-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23490197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2013 Jan;195(2):297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23144244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2015 Sep;39(5):649-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25907113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Jul;41(2):409-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11489127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Aug;101(4):606-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Mar;35(5):1110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1961 May;81(5):741-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16561900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1253-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25655665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2017 Jun;104(5):837-850</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28295778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5585-E5594</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29794222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2010 Feb;39(3):405-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1993 Jan;7(1):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(2):414-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20817675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Apr;7(4):e1002048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21552330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Jun;186(12):3970-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15175311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2014 Apr 23;114(8):4229-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24476342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Jan;99(2):425-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26434553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Feb;59(4):1216-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Sep;184(17):4881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1988 Mar;170(3):1046-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3125149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(6):e43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17311810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2005 Sep;89(3):1589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Dec 15;19(24):3083-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Jul;95(1):54-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Oct;184(20):5545-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12270811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Protein Sci. 2010 Apr;Chapter 7:Unit 7.13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20393977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1969 Oct 28;45(2):155-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4983717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 May;40(10):4247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22287629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1272-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25533083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2004 Aug 15;56(3):556-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15229887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):7746-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1999 Apr;76(4):2288-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10096923</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>New Brunswick (New Jersey)</li>
<li>Princeton (New Jersey)</li>
</settlement>
<orgName>
<li>Université Rutgers</li>
<li>Université de Princeton</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Adusei Danso, Felix" sort="Adusei Danso, Felix" uniqKey="Adusei Danso F" first="Felix" last="Adusei-Danso">Felix Adusei-Danso</name>
</region>
<name sortKey="Desantis, Micaela" sort="Desantis, Micaela" uniqKey="Desantis M" first="Micaela" last="Desantis">Micaela Desantis</name>
<name sortKey="Dubnau, David" sort="Dubnau, David" uniqKey="Dubnau D" first="David" last="Dubnau">David Dubnau</name>
<name sortKey="Dubnau, Eugenie" sort="Dubnau, Eugenie" uniqKey="Dubnau E" first="Eugenie" last="Dubnau">Eugenie Dubnau</name>
<name sortKey="Jeffrey, Philip D" sort="Jeffrey, Philip D" uniqKey="Jeffrey P" first="Philip D" last="Jeffrey">Philip D. Jeffrey</name>
<name sortKey="Khaja, Faisal Tarique" sort="Khaja, Faisal Tarique" uniqKey="Khaja F" first="Faisal Tarique" last="Khaja">Faisal Tarique Khaja</name>
<name sortKey="Neiditch, Matthew B" sort="Neiditch, Matthew B" uniqKey="Neiditch M" first="Matthew B" last="Neiditch">Matthew B. Neiditch</name>
</country>
<country name="Canada">
<noRegion>
<name sortKey="Demeler, Borries" sort="Demeler, Borries" uniqKey="Demeler B" first="Borries" last="Demeler">Borries Demeler</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000203 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000203 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31530674
   |texte=   Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31530674" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020